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near the accommodated wavelength can have detectable
contrast in the retinal image, which implies that high
spatial-frequency components play little role in color and
contrast perception. Second, in the moderate spatial-fre-
quency range, from 520 cpd, when the observer is accom-
modated to the yellow or green part of the spectrum, the
visual system is dichromatic: there is no contrast in the
short-wavelength receptor class.

Perhaps most important, the OTF we calculated sug-
gests an improved procedure for matching color images.
The conventional method of setting point-by-point match-
es between images fails to account for the fact that image
points on different displays may not have same pointspread
function on the retina Since the spatial patterns on the retina
from individual points on the displays do not match, one
cannot match the retinal images of two points simply by
adjusting the intensities of the three display primaries. In-
stead, to equate photo-pigment absorptions between im-
ages on different displays, one must adjust the primary
intensities in corresponding spatial-frequency bands. (We
describe this procedure in more detail below.)

Because the OTF depends on the wavelength of the
corneal image (as wed as its spatial frequency), using it to
compute photoreceptor responses can be computationally
quite expensive. When an image arises from a natural
scene, representing the surface and illuminant spectral
functions with finite-dimensional linear models greatly
simplifies the computation. In that case, a simpler OTF can
be computed that depends not on the wavelength of the cor-
neal image but only on the weights of the basis functions
that model the image. The number of weights win in most
cases be much smaller than the number of wavelength
samples, which is why the computation becomes so much
less expensive.

This simpler OTF can also be used to predict matches
of color images on emissive displays. This is because emis-
sive displays can be represented with a three-di-mensional
linear model. We presented our algorithm for color match-
ing on emissive displays in an earlier paper.7 Here we show
that this use of the OTF is a special case of the OTF that
arises from representing surface and illuminant functions
with linear models.

The remainder of the paper is organized as follows. In
the next section, we introduce notation for the OTF and
show how to use it to predict photoreceptor responses. Next,
we introduce linear models for surface and illuminant spec-
tral functions and show how their use simplifies the pre-
diction of photoreceptor responses. Then we show how our
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In an earlier paper,7 we modeled the axial chromatic aber-
ration of the human eye with an optical transfer function
(OTF). The OTF quantifies the interaction between wave-
length and spatial pattern in retinal image formation, and
therefore has important consequences for  color perception
and image matching. However, using the OTF for practical
calculations can be quite cumbersome. Here, we show how
using finite dimensional linear models for surface and
illuminant spectral functions greatly simplifies these cal-
culations in certain cases. In our earlier wow, we applied
our model to the problem of matching color images on
missive displays; we show here how this application is a
special case of this use of linear models.

Introduction

Because the human eye has an optical defect caned axial
chromatic aberration, it can only be in focus at one wave-
length at a time. Other wavelengths are out of focus and cause
a blurred image to form on the retina The amount of blur-
ring depends on both the wavelength composition of the
light and its spatial pattern. This interaction between wave-
length and spatial pattern has important consequences for
color perception and image matching. In this paper, we show
how the use of linear models greatly simplifies the calcula-
tions required to quantify these consequences, and how to
apply them to the problem of matching color images.

We have modeled the transformation from the im-
age at the eye, which we cad the corneas image, to the
retinal image as an optical transfer function (OTF).7 We
based our calculations on an analysis of the chromatic
aberration of a diffraction-limited optical system with a
circular aperture described by Hopkins (1955).5 We
implemented Hopkins’ calculation using the parameters
of the human eye,6,11,8,1,10,9,3 and we used the results of
Williams et al.14 to incorporate the wavelength-inde-
pendent aberrations. The OTF takes the wavelength and
spatial frequency distribution of the corneal image and
produces the wavelength and spatial frequency distribu-
tion of the retinal image. Using the wavelength sensitiv-
ity of the retinal photoreceptors, we can then compute the
spatial frequency distribution of photoreceptor responses.

Calculating the OTF enabled us to quantify a number
of the interactions between wavelength and spatial fre-
quency relevant for color perception and image matching.
First, above 20 cycles per degree (cpd), only wavelengths
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algorithm for matching color images across emissive dis-
plays is a special case of this simplification. Finally, we
present a few conclusions.

The OTF and Retinal Images

To make these ideas more concrete, we introduce some no-
tation and show how to use the OTF to compute retinal
images. For simplicity, we deal only with one-dimensional
images, but the extension to two dimensions is straightfor-
ward. Let the optical transfer function be O(ν, λ), where ν
is spatial frequency in cycles per degree, and λ is wave-
length in meters. Let the one-dimensional corneal image
be ƒ (χ, λ), where χ is spatial position in degrees of visual
angle. At location χ0, for example, the SPD of the corneal
image is ƒ (χ0, λ). We denote the corresponding retinal
image as g(χ, λ). Finally, we denote the Fourier transform
of these images with respect to the spatial variable, χ, us-
ing capital letters, F(ν, λ) and G(ν, λ).

The OTF O relates the Fourier transform of the cor-
neal image, F (ν,λ ), to the Fourier transform of the retinal
image G(ν, λ), via

G (ν, λ) =F (ν, λ)O (ν, λ)

To express the retinal image in terms of photoreceptor
absorptions, we combine the OTF with the photopigment
absorption curves Ai (λ). When we compute the photore-
ceptor absorptions, Pi, from a uniform field with spectral
power distribution F(λ), we use the formula

Pi = F(λ) ΑιV∫ (λ)dλ

where V is the range of visual wavelengths. But when we
compute the Fourier transform of the spatial pattern of pho-
toreceptor absorptions for the ith class of photoreceptors,
Pi(v), from an image with Fourier transform F(ν, λ ), we
must incorporate the OTF via the following equation:

      Pi (v) = F(v,λ )O(λ ,v)Ai (λ )dλ
v∫  (1)

Linear Models for Surfaces and Illuminants

When a scene consists of surfaces and illuminants whose
spectral functions can be described with finite-dimensional
linear models, we can greatly simplify the prediction of
retinal from corneal images. (For a introduction to the use
of linear models for spectral functions, see Wandell12). Sup-
pose for the illuminant SPD we have the linear model

  E(λ ) = ω i
E

i=1

dE

∑ Ei (λ ),

where E(λ) is the illuminant SPD, d
E
 is the dimension of

the linear model, Ei(λ) is the ith basis function, and ω i
E the

weight on the ith basis function. The spatial distribution of
illuminant SPDs then becomes

 e(χ ,λ ) = ω i
E (χ )Ei (λ ),

i=1

dE

∑

where the weights ω i
E  now depend on the spatial location

χ.  When we describe surface reflection functions with a

linear model, the analogous equation for the spatial distri-
bution of surface reflectances is

 s(χ ,λ ) = ω i
s (χ )Sj (λ ).

j=1

ds

∑

The corneal image f (χ, λ) is the product of the
illuminant and surface spatial distributions

ƒ(χ, λ)=e (χ, λ) s (χ, λ).

Expressing the illuminant and surface distributions in
terms of their linear models, we have

ƒ(χ, λ) = i
Eω (χ)Ei (λ)

i=1

dE

∑





 j
Sω (χ)Sj(λ)

j=1

d
S

∑










= (
j=1

ds

∑
i=1

dE

∑ i
Eω (χ) j

sω (χ)) (Ei (λ)Sj (λ))

(2)

We now show that this defines a finite-dimensional
model for the image ƒ(χ, λ). Let k = (i - 1)d

s
 + j, so that k

ranges from 1 to d
F
 = d

E
d

s
. Then define F

k
(λ) = E

i
(λ)S

j
(λ),

and ω k
F (χ) = ω i

E  (χ) ω j
S  (χ). Substituting these expressions

into Equation 2, we find that

f (χ ,λ ) = ω k
F

k=1

dF

∑ (χ )Fk (λ ) .

This implies a a dF-dimensional linear model for F (λ).
The Fourier transform of ƒ (χ, λ) is

F(v,λ ) = Wk
F

k=1

dF

∑ (v)Fk (λ ), (3)

where WK
F (v)  is the Fourier transform of ω k

F (χ).
To compute the spatial pattern of photoreceptor ab-

sorptions, we again use Equation 1, but now we express
the integral in a slightly different form by substituting the
definition of F from Equation 3:

Pi (ν) = k
FW (ν)Fk (λ)

k =1

dF

∑



V∫ o(λ, ν) Αi (λ)dλ

= k
FW

k=1

dF
∑ (ν) Fk (λ)O(λ,

V∫ ν) Αi (λ)dλ

By defining a new function,

Cik (ν) = Fk (λ)
V∫ o(λ, ν)Ai (λ)dλ

we can write the relationship between the spatial-fre-
quency components of the dF basis functions for F and
the spatial frequency components of the spatial pattern
of photoreceptors as

Pi (ν) = Cik
j=1

dF

∑ (ν) Fk (ν) , (4)

which we can in turn write as a matrix multiplication com-
puted separately for each spatial-frequency component:
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. (5)

We will express the spatial-frequency-dependent ma-
trix multiplication using the matrix notation

        Pν = CνFν, (6)

where Pv is a three-dimensional column vector with entries
Pi (v), Cv is a three-by-three matrix with entries Cik (v), and
Fv is a dF-dimensional column vector with entries Fk (v).

Color Matching on Emissive Displays

To model a emissive display in this framework, we observe
that conventional displays have three primary lights, each
with its own SPD. At each spatial location, the SPD of the
display is a linear combination of the SPDs of the three
primaries. Clearly this is the case of Equation 3, where the
corneal image is expressed in terms of a finite-dimensional
linear model. The dimension dF = 3, and each Fk (λ) is the
SPD of one of the three primaries. In this case, the linear
model is a consequence not of the linear models for the
illuminant and surface spectral functions, but merely of the
way that an emissive display forms images.

For an emissive display, Equations 4-6 generalize the
matrix equation commonly used in color calibration from
the special case of a uniform field. When we incorporate
the OTF into the calculation, we can relate the primary in-
tensities to the photoreceptor absorptions by expressing the
images in the spatial-frequency domain. We must use a dif-
ferent matrix at each spatial frequency. The entries of the
matrix are determined by the spectral power distributions
of the display primaries, the photopigment absorption
curves, and the optical transfer function of the eye. In the
case of an emissive display, we call the collection of matri-
ces Cv the device-calibration matrices.

Notice that the matrix C0 defines the mapping from
the display primary intensities of a uniform field (spatial fre-
quency of zero) to the receptor responses. This three-by-three
calibration matrix is widely used in conventional colorim-
etry.2,4,13 The device-calibration matrices, which now depend
on spatial frequency, generalize conventional colorimetric
mapping from uniform fields to patterned images.

Using Equation 6, we can develop a method of equat-
ing the photoreceptor absorptions from images on display
with different primaries. Suppose we have two displays with
calibration matrices Cv and Cv

' . Consider an image, Fv
' .

We can calculate the expected pattern of photoreceptor
absorptions for the image on the first display from the ma-
trix multiplication, CνFν. To equate photoreceptor absorp-
tions from the two images requires that we find an image
on the second display, defined by Fv such that at each spa-
tial frequency,

      Cv
' Fv

'  = CνFν. (7)

For each spatial frequency, v, we can solve for the im-
age F’ν using

Fv
'  = ( Cv

' )-1 Cν Fν
In practice, we may be limited in how closely we can

obtain the matches since the matrices Cv
'  may not be in-

vertible, and the solutions may not lie within the color gamut
of the second display.

Conclusions

Because of the eye’s chromatic aberration, the wavelength
and spatial frequency of corneal images interact in the for-
mation of retinal images. In our earlier work we have mod-
eled this interaction as an OTF, calculated the OTF based
on optical and psychophysical measurements, and quanti-
fied some consequences of the OTF interaction for color
perception and imaging matching. This led to a new algo-
rithm for matching color images across emissive displays.
Here, we showed that using linear models of surface and
illuminant spectral functions greatly simplifies the use of
the OTF for images arising from natural scenes, and that
our algorithm for matching color images is a special case
of this use of linear models.
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